202 research outputs found

    Energy-Efficient Visual Search by Eye Movement and Low-Latency Spiking Neural Network

    Full text link
    Human vision incorporates non-uniform resolution retina, efficient eye movement strategy, and spiking neural network (SNN) to balance the requirements in visual field size, visual resolution, energy cost, and inference latency. These properties have inspired interest in developing human-like computer vision. However, existing models haven't fully incorporated the three features of human vision, and their learned eye movement strategies haven't been compared with human's strategy, making the models' behavior difficult to interpret. Here, we carry out experiments to examine human visual search behaviors and establish the first SNN-based visual search model. The model combines an artificial retina with spiking feature extraction, memory, and saccade decision modules, and it employs population coding for fast and efficient saccade decisions. The model can learn either a human-like or a near-optimal fixation strategy, outperform humans in search speed and accuracy, and achieve high energy efficiency through short saccade decision latency and sparse activation. It also suggests that the human search strategy is suboptimal in terms of search speed. Our work connects modeling of vision in neuroscience and machine learning and sheds light on developing more energy-efficient computer vision algorithms

    Improved Annealing-Genetic Algorithm for Test Case Prioritization

    Get PDF
    Regression testing, which can improve the quality of software systems, is a useful but time consuming method. Many techniques have been introduced to reduce the time cost of regression testing. Among these techniques, test case prioritization is an effective technique which can reduce the time cost by processing relatively more important test cases at an earlier stage. Previous works have demonstrated that some greedy algorithms are effective for regression test case prioritization. Those algorithms, however, have lower stability and scalability. For this reason, this paper proposes a new regression test case prioritization approach based on the improved Annealing-Genetic algorithm which incorporates Simulated Annealing algorithm and Genetic algorithm to explore a bigger potential solution space for the global optimum. Three Java programs and five C programs were employed to evaluate the performance of the new approach with five former approaches such as Greedy, Additional Greedy, GA, etc. The experimental results showed that the proposed approach has relatively better performance as well as higher stability and scalability than those former approaches

    Predicting progression of white matter hyperintensity using coronary artery calcium score based on coronary CT angiography—feasibility and accuracy

    Get PDF
    ObjectiveCoronary artery disease (CAD) usually coexists with subclinical cerebrovascular diseases given the systematic nature of atherosclerosis. In this study, our objective was to predict the progression of white matter hyperintensity (WMH) and find its risk factors in CAD patients using the coronary artery calcium (CAC) score. We also investigated the relationship between the CAC score and the WMH volume in different brain regions.MethodsWe evaluated 137 CAD patients with WMH who underwent coronary computed tomography angiography (CCTA) and two magnetic resonance imaging (MRI) scans from March 2018 to February 2023. Patients were categorized into progressive (n = 66) and nonprogressive groups (n = 71) by the change in WMH volume from the first to the second MRI. We collected demographic, clinical, and imaging data for analysis. Independent risk factors for WMH progression were identified using logistic regression. Three models predicting WMH progression were developed and assessed. Finally, patients were divided into groups based on their total CAC score (0 to <100, 100 to 400, and > 400) to compare their WMH changes in nine brain regions.ResultsAlcohol abuse, maximum pericoronary fat attenuation index (pFAI), CT-fractional flow reserve (CT-FFR), and CAC risk grade independently predicted WMH progression (p < 0.05). The logistic regression model with all four variables performed best (training: AUC = 0.878, 95% CI: 0.790, 0.938; validation: AUC = 0.845, 95% CI: 0.734, 0.953). An increased CAC risk grade came with significantly higher WMH volume in the total brain, corpus callosum, and frontal, parietal and occipital lobes (p < 0.05).ConclusionThis study demonstrated the application of the CCTA-derived CAC score to predict WMH progression in elderly people (≥60 years) with CAD

    Artificial intelligence-aided rapid and accurate identification of clinical fungal infections by single-cell Raman spectroscopy

    Get PDF
    Integrating artificial intelligence and new diagnostic platforms into routine clinical microbiology laboratory procedures has grown increasingly intriguing, holding promises of reducing turnaround time and cost and maximizing efficiency. At least one billion people are suffering from fungal infections, leading to over 1.6 million mortality every year. Despite the increasing demand for fungal diagnosis, current approaches suffer from manual bias, long cultivation time (from days to months), and low sensitivity (only 50% produce positive fungal cultures). Delayed and inaccurate treatments consequently lead to higher hospital costs, mobility and mortality rates. Here, we developed single-cell Raman spectroscopy and artificial intelligence to achieve rapid identification of infectious fungi. The classification between fungi and bacteria infections was initially achieved with 100% sensitivity and specificity using single-cell Raman spectra (SCRS). Then, we constructed a Raman dataset from clinical fungal isolates obtained from 94 patients, consisting of 115,129 SCRS. By training a classification model with an optimized clinical feedback loop, just 5 cells per patient (acquisition time 2 s per cell) made the most accurate classification. This protocol has achieved 100% accuracies for fungal identification at the species level. This protocol was transformed to assessing clinical samples of urinary tract infection, obtaining the correct diagnosis from raw sample-to-result within 1 h

    Cluster of SARS among Medical Students Exposed to Single Patient, Hong Kong

    Get PDF
    We studied transmission patterns of severe acute respiratory syndrome (SARS) among medical students exposed exclusively to the first SARS patient in the Prince of Wales Hospital in Hong Kong, before his illness was recognized. We conducted a retrospective cohort study of 66 medical students who visited the index patient’s ward, including 16 students with SARS and 50 healthy students. The risk of contracting SARS was sevenfold greater among students who definitely visited the index case’s cubicle than in those who did not (10/27 [41%] versus 1/20 [5%], relative risk [RR] 7.4; 95% confidence interval [CI] 1.0 to 53.3). Illness rates increased directly with proximity of exposure to the index case. However, four of eight students who were in the same cubicle, but were not within 1 m of the index case-patient, contracted SARS. Proximity to the index case-patient was associated with transmission, which is consistent with droplet spread. Transmission through fomites or small aerosols cannot be ruled out
    corecore